"Tropical rain forests-their complexities and their tragic demise"

Thomas B. Croat

P. A. Schulze Curator

Missouri Botanical Garden

Holden Arboretum Scie Cleveland Botanical Ga

Collection trip Kenya, 1975 e to Madagasca

Florida Everglades

Shruby forest on sandstone near Kaieteur Falls in Guyana

Photo of tepui formations in Guiana Highlands

Add photo of Savana in the Guiana Highlands

Photo of Heliamphora bog on Cerro Neblina

Dense forests in Costa Rica or Panama to show those I work with most

Forest in Northern Trinidad

oud forest Colombia oto Emilio nstantino

Tropical wet forest life zone, Pastaza

An area such as this on the western slope of Valle Department Colombia has hundreds of undescribed species

and the second

140 species

Parque Nacional Sangay Morona-Santiago Prov.

Flora of Guaycuyacu Pichincha, Province

ca. 80 species

Forest at Mera, Pastaza Province

Valley of Anchicaya & Reposo

Emilio

Constantino

getation on Queremal-Anchicaya Road

Forest edge in Premontane rain forest, Chiriquí Province, Panama near Fortuna Lake

Panama Canal Zone- Barro Colorado Island in green near middle of lake.

Barro Colorado Island, Panama

Barro Colorad clearing harb Some of the earlier buildings in lab clearing- View toward Gatun Lake

Contraction of the second

Dorm and Lunch Rm

Smithsonian Tropical Research Institute

on Barro Colorado Island, Canal Zone

rro Colorado Island-Laboratory clearing oking into forest toward Fairchild Point

Small winch-driven cart to haul luggage and supplies from boat dock

t view of Administrative Zone of Barro Colorado Island Research Station

Using small aluminu to collect on the sho

Climbing trees gives an opportunity to photos of epiphytes in

atural con

Climbing trees with **climbing** spikes enables one to go nearly anywhere to get to epiphytes

Near Canopy Level

Canopy near laboratory clearing

Characteristics of Tropical Forest

- High Species Diversity
- High Species Diversity
- Poor soils

High Species Diversity

- Isolation by mountain ranges,
- River Valleys
- Soil types
- Pollinator pressures
- Fruit dispersal pressures

High habit diversity

- Habit diversity greater in tropics
 - Broader range of arborescent vegetation
 - Multi-layered arborescent vegetation
 - Buttressed trees
 - Strangler trees
 - Hemi-epiphytic trees
 - Climbing shrubs
 - Palms
 - Lianas
 - Epiphytic plants
 - Parasitic plants
 - Saprophytic plants
 - Broad leaved monocots
 - Free-floating aquatics
High Habit Diversity

- Multilayered arborescent levels
- Palms
- Lianas
- Large leaved monocots
- Epiphytes
- Saprophytes
- Free-floating aquatics
- Mast flowering

Plants which typify tropical forests

Add images of Bromeliaceae

> Add images of leaved Mono Heliconia, Re Costus, Musa Calathea

Unusual tropical forest characteristics

asites

to enter n

amitonii (Apodanthaceae)

Apodanthes caseaiae (Apodanthaceae)

Balanophoraceae- Root Parasite

tletoes (Loranthaceae) are ideally suited ttachment

Mistletoe (Loranthaceae) seed adhering to branch

oniia siana

1

a des

102862′

Heliconia- cor in new clearir forest margin

Other things which characterized Tropical Forests

• Araceae, Bromeliaceae, ferns,

of side of forest showing different trees

Bauhinia

Lianas manage to get themselve into the canopy and are often flexible, enabling them to surviv tree falls. Abundant in both old and new world

Climbing shrubs

Hemiepiphytic trees require large roots extending to ground

in my le the the portion of a hemie tree growing at 30

Tree covered with epiphytes

e buttressing is al for support of gest trees.

Rooting system i shallow, probabl owing to lack of nutrients in the s

Stilt-rooting provides for greater support

tic tropical soils

Tropical tree with close to surface roots which make extend out for 10 m on each side of tree

Epiphytes usually comprise a large percentage of all individual plates forest

View of broken branch with epiphytes

Epiphytic Bromeliaceae

Epiphytic Cyclanthac

The understory of a tropical forest may get only 1-5% the amount of light at the top of the cano

Evolutional strategies for getting to light

- Don't compete. Become a weed. Crop weeds. Cecropia. Gleicheniaceae
- Invade open areas of shallow water. Grasses, water lilies, Hydrilla,
- Dormancy. Wait in soil until a tree fall opens up ground to the sun.
- Poison your neighbor and take his place. Coria alliodora
- Climb your neighbor and establish yourself higher in the canopy
- Strangle your neighbor, take his good position. Ficus, strangler figs
- Become an epiphyte. Climb or "fly" to a new position

Some plants, mainly weeds avoid competition for light and nutrients by occurring in areas disturbed by man-Agricultural crops weeds

Narrow treelined coves filled with aquatics

The last stages of hydrarc succession in a cove

new opportunity for dormant seeds, invasive rapidly growing species. Ferns, broad-leaved monocots Cecropia

Renealmia 104

Cordia alliodora (Boraginaceae)roots secrete substance that kills competing species.

Show growth of lianas ; Flowering Bignons

Young growth terrestrial with long internodes, scototropic growth, followed by creep up, phototropic growth, long internodes

Monstera and Syngonium both show scototropism

Methods of Climbing

- Twining
- Tendrils
- Spines or hooks
- Opposed branching
- Twining branches

Climbing by twining trunks or stems

Climbing by tendrils

Antigonon leptopus (Polygonaceae)

Cuspidaria subincana

Bignonia capreolata

Bignonia capreolata

© Jeremy Stovall

Bignoniaceae-Lian often-coverg cano

4

Fridericia candicans

Opposing branched stems and tendrils allow Bignons to hold their position in the canopy

Climbing by recurved spines of hooks

The palm Desmoncus climbs by large recurved spines created by modified leaflets

Climbing by twinging stems-Hippocrateaceae

gle your neighbor and take over his spot

Primary hemiepiphyte- Begins life as a true epiphyte, later sends roots to the ground

Strangler fig surrounding living tree to left, tree dies and is replaced by network of Ficus tree

Become an epiphyte

A True Epiphyte

Primary hemiepiphytes

Secondary hemipiphytes

Secondary hemiepiphytes with roots reaching the ground

- mals and plants have co-evolved to form tualistic systems for pollination and fruit persal
- nd pollinated plants are rare in tropical ests

Steve Shinn Photography

SEF 1

Erythrina

Sacha Wiwa Reserve

Lobelia cardinalis

Actual flowers are not red, only bracts

Flowers not red, only spots on leaves

Gesneriaceae

Passiflora

Photos Emilio Constantino

Geseriaceae, Sacha wiwa

Morpho butterfly visiting small tubular flowers

Convolvulus pollinated by hawk moth

Quis

Color of flower deno

<u>serva Sacha wiwa</u>

Bee pollinated flowers are zygomorphic, have a large throat and a landing platform with guide lines

Even when apparently they have sexual orga

Passiflora wit be pollination with the sam staminal and movements a hummingbird pollinated Passifloras. etimes visit and perhaps pollinate flowers that are not typically bee flowers, those with narrow tub

Bumble bees use vibrations to shake pollen out of tubular flower

Bees may be versatile and out of form, here visiting an open flower with small tubular flowers

e bee pollinated flower- narrow Geseneriace

pollinated plants often are dark colored d have foul scents

Anthurium triciafrankia

Orchids are insect pollinated, most by bees but obviously bees of nany different sizes.

Many Anthurium species are bee-pollinated

Plant on left is in male phase with pollen. Bees are collecting pollen which may be carried to a plant in female phase

> Plant on right is in female phase with stigmas forming droplets

Beetle-pollinated flowers have sweet scents and more or less closed at the time of flowering

Rhodospatha

Cyclanthaceae and Palmae are often pollinated by beetles

nonaceae are mostly pollinated by small beet wer scent sweet, pollinated often at night

ollinated flowers are typically pendent proad-throated

Mammal-pollinated flowers are apparently few

ny species, perhaps most are not known heir pollinators

Bird-dispersed fruits are typically colorful but without strong scents

tmeg ready to open showing aril

Birds are probably the principle disperser of Anthurium and may frequently disperse Philodenron

Mammal dispersed fruits are large and usually aromatic when mature.

Nectandra fruits are large and ready to germinate quickly

Alternative extreme strategies. Lauraceae with a few large fruits. Orchids with millions of tiny seeds.

Spondias mombin and sca hoarding agoutis

olosive dispersal of seeds is reasonably comm ra crepitans with fragments after exploding

eds shake out apex of capsule. Seeds disperse wly out of pores owing to shaking by the wind animals.

bical wind-dispersed maroid fruits

ibiaceae with an enlarged ng on one of the calyx bes

Cochlospermum vitifolium capsules yield a cotton like fuzz with seeds emersed

Pithecoctenium echinatum fruits have flat highly buoyant seeds

Epizoochorous fruits- designed to be carried in fur by animals

Seeds are forcibly ejected by the violen untwisting of capsule segments

Average rainfall in centimeter on BCI

Drying affect of the trade winds in the early part of the dry season

Flowering and fruiting phenology on BCI

Flowering behavior of all habit classes on BCI

Phenology of habit classes of BCI plants

-

Flowering behavior of woody plants on BCI

This was the

Decomposers work quickly to break down materials into nutrients

Micorrhizal fungi on plant root

Another class of fungi help plants to quickly reabsorb all the newly available nutrients.

Nutrient Recycling is Permanent and has taken place for millions of years.

- An incredible biomass sits atop nearly useless soil
- All nutrients are locked up in the living forest
- What happens when we interrupt this cycle by removing the forest?
Remove valuable big lumber trees

Sliced up wood to form planks

Loggers preparing to haul out cut up logs with pack animal.

Try to burn what is left

Forest Destruction near Pto. Bermudez, Peru

Forest destruction near Pto. Bermudez

Without tree cover soils quickly erode

Some weedy trees slowly regrow but but most species are lost

Much converted to annually burned pasture

Chiriquí Province in W. Chiriquí, Panama

The now removed forest once contained thousands of species

Clear felled forest on border of Yanachaga-Chemillén Park, Pasco Department, Peru

Much forest is also lost to road building, often the first openings to colonization

A barren landscape after deforestation

Acres 10

Anacardium excelsum

Sacha wiva Reserve

