Shaw Nature Reserve

Preserving and documenting diversity

By Garrett Billings
History of Shaw Nature Reserve

• Burned frequently
 – Native Americans
 – Natural fire regimes

• Used almost exclusively as agriculture
 – Encouraged red cedar
 – Greatly impacted soil stability
History of Shaw Nature Reserve

- Land purchased in 1925 due to coal-soot pollution in St. Louis

- 1932 named The Missouri Botanical Garden Arboretum

- Orchid collection
 - By 1943 over 20,000 plants were housed in greenhouses. (mostly orchids)

- 1934 E. Anderson establishes native plant collection

 1937 Louis Brenner lays out wildflower trails

 2000 renamed Shaw Nature Reserve
E. Anderson

- Introgressive hybridization
- Plants, Man and life
- Keen interest in cultivated and economically useful plants
- Studied corn crops, and corn hybridization
E. Anderson

- Established 40 species of wildflowers

- Curator
 1954-1957

- Darwin-Wallace medal of Linnaean Society
Shaw Nature Reserve

- Located on the boundary line of the historic glaciated northern prairies and southern Ozark Plateau
- Meramec river front
- Bedrock primarily dolomite and limestone.
- Clay loam, sand loam and black river bottom soil along limestone bluffs.
Habitats
Prairies

Schizachyrium scoparium

Andropogon gerardii
Glades

- Echinacea
- Dalea
- Oenothera macrocarpa
Woodlands
John Behrer began the construction in 1991
32 acres of wetland
Considered by the Corp of Engineers as a natural wetland equivalent

- Biodiversity hotspots
- Pollutant filters
- Soil erosion control
- Flood control
- Water reservoir
Wetland

Taxodium distichum

Nyssa aquatica

Uercus phellos

Carex brevior

Carex spp.

Juncus spp.

Scirpus spp.
Other riparian communities

Meramec river

Pinetum Lake
Collecting Shaw

- Plants were collected, pressed and placed in a dryer.
- Young leaf tissue was collected in coffee filters and later stored in silica gel.
- 65 species were collected.
Checklist

• 1605 specimens
DNA barcoding

- DNA barcoding is a short gene sequence from a standardized region of the genome used to distinguish and characterize species.
Benefits of DNA barcoding

• Forensic analysis
 – Herbal medicines
 – Protection of endangered species
 – Species identification
Development of DNA barcoding

• Needs to be universally effective
 – Standardization
 – Minimalism
 – Scalability

A universal primer is needed

• (i) universality (ease of amplification and sequencing)
• (ii) sequence quality
• (iii) discriminatory power
• Extraction
• Amplification
• Sequencing
Consortium for the barcode of life

- COBL Proposed primers matK and rbcL as potential universal barcodes

Orchid case study:
matK
Lahaye et al found:
Tested 1,036 species of orchids
Resulted in >90% correct species identification.

<table>
<thead>
<tr>
<th></th>
<th>rbcL</th>
<th>matK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>High amplifications and sequencing success</td>
<td>High rate of species discrimination success</td>
</tr>
<tr>
<td>Negative</td>
<td>Low rate of discrimination success</td>
<td>Low amplification and sequence success in many plant groups</td>
</tr>
<tr>
<td></td>
<td>matK</td>
<td>rbcL</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Genbank Presence</td>
<td>54% (561/1031)</td>
<td>53% (541/1031)</td>
</tr>
<tr>
<td>Species amplified</td>
<td>56% (17/30)</td>
<td>58% (18/31)</td>
</tr>
<tr>
<td>Species with > 80% sequence accuracy</td>
<td>5% (1/17)</td>
<td>88% (15/17)</td>
</tr>
<tr>
<td>Species with < 80% sequence accuracy</td>
<td>94% (16/17)</td>
<td>12% (2/17)</td>
</tr>
<tr>
<td>Species correctly identified to family</td>
<td>52% (9/17)</td>
<td>88% (15/17)</td>
</tr>
<tr>
<td>Species correctly identified to genus</td>
<td>35% (6/17)</td>
<td>76% (13/17)</td>
</tr>
</tbody>
</table>
DNA barcoding databases

Genbank presence

- matK - 54%
- rbcL - 53%

Vouchers?
Take home message

• Currently there is no “universal” barcode that will work for all groups of flowering plants
• Standard primers like matK and rbcL on average tend to identify 70% of taxa, but if correct gene region is chosen for a particular group than >90% can be sequenced species specific
• Different gene regions code better for different plant groups. (imagine that)
• Great strides must be made if a universal barcode will ever be adopted for plants
Acknowledgements

• Special thanks to the National Science Foundation, thanks to everybody at Missouri Botanical Gardens for being so nice all the time and helping me learn so much. thank you David Bogle, Peter Stevens, Ron Liesner, George Yatskievych, Karla Kostalac and all of the REU students.
Sources

• Photos:
 http://people.wku.edu/charles.smith/chronob/ANDE1897.htm (e. anderson)
 http://www.stltoday.com/look-back-smoky-st-louis-nov/image_ba18f484-f5c8-11df-b89d-00127992bc8b.html (coal pollution)

Info-
 http://www.missouribotanicalgarden.org/visit/family-of-attractions/shaw-nature-reserve/about-shaw-nature-reserve.aspx (shaw history)