Talk Outline

• Introduction
• Working Hypothesis
• Methods
 – Study System
 – Quantification of Sampling Effort
 – Computer Simulation Experiment
• Results
• Conclusions & Implications
Species’ Range Size Distributions

of Species vs. Range Size

Gaston, 2003
Species’ Range Size Distributions

Mean of Range Size Distribution

of Species

Range Size
Species’ Range Size Distributions
Species’ Range Size Distributions

Mean of Range Size Distribution 1

Mean of Range Size Distribution 2

of Species

Range Size
Means of Range Size Distributions for Vascular Plants

Morueta-Holme, et al. 2013
Talk Outline

• Introduction
• **Working Hypothesis**
• Methods
 – Study System
 – Quantification of Collection Effort
 – Computer Simulation Experiment
• Results
• Conclusions & Implications
A quantitative model that relates the effects of sampling effort to bias in estimates of the mean of range size distributions.

\[\text{(Working Hypothesis)} \]

Where \(P_m \) is the probability of not discovering a species, \(d \) is detectability, \(Ci \) is sampling effort, \(AOO \) is geographic range size measured as area of occupancy.
Working Hypothesis

longitude

latitude

x

x

x

x

x

x

x
Working Hypothesis

Sampling Effort
Bias in Estimates of the Mean of Range Size Distributions is defined as:

\[(\text{Mean Range Size of discovered species} - \text{Mean Range Size of all species})\]
Working Hypothesis

Sampling Effort
• **Prediction 1**: As mean sampling effort increases, the bias in the estimate of the mean of range size distributions will decrease.
Aggregation in Sampling Effort
Working Hypothesis

- **Prediction 2**: As spatial aggregation in sampling effort increases, the bias in the estimate of the mean of range size distributions will increase.
Talk Outline

• Introduction
• Working Hypothesis
• **Methods**
 – Study System
 – Quantification of Collection Effort
 – Computer Simulation Experiment
• Results
• Conclusions & Implications
Talk Outline

• Introduction
• Working Hypothesis

• **Methods**
 – Study System
 – Quantification of Sampling Effort
 – Computer Simulation Experiment

• Results

• Conclusions & Implications
Quantification of Sampling effort

- 986,107 herbarium specimen records used
- Collector Days = unique combinations of collector name and collection date (Sheth, et al. 2012)
Quantification of Sampling effort

longitude

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

latitude

10 km

10 km
Quantification of Sampling effort
Quantification of Sampling effort
Quantification of Sampling effort

Mean Collector Days

Relative Frequency of 100 x 100km cells

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Mean Sampling Effort

-4 -2 0 2 4

Andes: 113 grid cells
Amazon: 157 grid cells
Quantification of Sampling effort

Mean Collector Days

Spatial Aggregation in Collector Days
Talk Outline

• Introduction
• Working Hypothesis

• **Methods**
 – Study System
 – Quantification of Sampling Effort
 – Computer Simulation Experiment

• Results
• Conclusions & Implications
Computer Simulation Experiment

100,000 Species
Bias in Estimates of Mean Range Size is defined as:

\[
\text{Bias} = \left(\text{Mean Range Size of discovered species} - \text{Mean Range Size of all species} \right)
\]
Talk Outline

• Introduction
• Working Hypothesis
• Methods
 – Study System
 – Quantification of Sampling Effort
 – Computer Simulation Experiment
• Results
• Conclusions & Implications
Prediction 1: As mean sampling effort increases, the bias in the estimate of the mean of range size distributions will decrease.
Prediction 1: As mean sampling effort increases, the bias in the estimate of the mean of range size distributions will decrease.
Prediction 2: As spatial aggregation in sampling effort increases, the bias in the estimate of the mean of range size distributions will increase.
Prediction 2: As spatial aggregation in sampling effort increases, the bias in the estimate of the mean of range size distributions will increase.
Talk Outline

• Introduction
• Working Hypothesis
• Methods
 – Study System
 – Quantification of sampling effort
 – Computer Simulation Experiment
• Results
• **Conclusions & Implications**
Conclusions

• **Mean sampling effort** is higher in the Andes than Amazonia.

• **Spatial aggregation** of sampling effort is lower in the Andes than Amazonia.
Conclusions

• **Mean sampling effort** has a negative relationship with bias in estimates of the mean of range size distributions.

• **Spatial aggregation** in sampling effort has a positive relationship with bias in estimates of the mean of range size distributions.
Implications

• Current descriptions of geographic variation in RSD (Morueta-Holme, et al. 2013) and the density of narrowly distributed plant species across the Neotropics (Myers, et al. 2000; Pimm, et al. 2014) may be more fiction than substance, and should be regarded as highly tentative at best.
Acknowledgments

• David Bogler
• Burgund Bassuner
• The Center for Conservation and Sustainable Development
• 2014 REU interns at the Missouri Botanical Garden.
• National Science Foundation.
Questions?