Comparative Analysis of Wild Annual and Herbaceous Perennial *Astragalus* (Fabaceae)

Summer D. Sherrod¹, Sterling Herron², E. Claudia Ciotir², Allison J. Miller² ¹University of North Texas, ²Saint Louis University

Annual Monoculture

Perennial Polyculture

Key innovations:

- 1. Perennial crops
- 2. Grown in mixtures

Annual Monoculture

Perennial Polyculture

- 1. Perennial crops
- 2. Grown in mixtures

Annual Monoculture

Perennial Polyculture

- 1. Perennial crops
- 2. Grown in mixtures

Annual Monoculture

Perennial Polyculture

- 1. Perennial crops
- 2. Grown in mixtures

Annual Monoculture

Perennial Polyculture

- 1. Perennial crops
- 2. Grown in mixtures

Herbaceous perennials

Annuals

Multiple growing seasons

Regrow from roots every year

One growing season

Woody perennials

Herbaceous perennials

Annuals

Domestication:

Morphological and genetic changes relative to wild progenitors as a result of artificial selection

Woody perennials

Herbaceous perennials

Annuals

Domestication:

Morphological and genetic changes relative to wild progenitors as a result of artificial selection

Domestication Syndrome:

Suite of traits (increased fruit size, reduced toxicity, etc.) that characterize domesticated species

Adapted from Van Tassel et al. 2010

Herbaceous perennials

Annuals

Trade-offs?

Herbaceous perennials

Annuals

Trade-offs?

Fruits Stems/ Leaves

Herbaceous perennials

Annuals

Adapted from Van Tassel et al. 2010

Perennial Agriculture Project

Kernza[®]

Silphium

Alfalfa

Perennial Agriculture Project

Goals:

- Identify wild herbaceous perennials that are good candidates for domestication
- Test hypotheses about how herbaceous perennials compare to annuals (germination, growth rate, resource allocation, etc.)

Perennial Agriculture Project

Goals:

- Identify wild herbaceous perennials that are good candidates for domestication
- Test hypotheses about how herbaceous perennials compare to annuals (germination, growth rate, resource allocation, etc.)

🐮 Missouri Botanical Garden

UNIVERSITY...

• Germination rate?

- Germination rate?
- Seedling growth rate?

- Germination rate?
- Seedling growth rate?
- Biomass allocation?

- Germination rate?
- Seedling growth rate?
- Biomass allocation?
- Correlations between reproductive and vegetative structures?

- Germination rate?
- Seedling growth rate?
- Biomass allocation?
- Correlations between reproductive and vegetative structures?

Expected little to no difference for time frame of project and little to no correlations

Two distinct datasets for comparing perennials & annuals

Two distinct datasets for comparing perennials & annuals

Astragalus is a model system for studying perennial & annual congeners

- Monophyletic
- 3000+ species
- Nearly all annuals or herbaceous perennials
- Many temperate natives
- Many species have historically been used for food and medicine

Herbaceous Perennials

Canadian milkvetch A. canadensis One accession 178 seeds

Groundplum milkvetch A. crassicarpus Three accessions 118/115/117 seeds

Annuals

Lindheimer's milkvetch A. lindheimeri One accession 119 seeds

Nuttall's milkvetch A. nuttallianus Two accessions 124/119 seeds

Hypothesis 1a: Little to no difference in **germination** between herbaceous perennials and annuals

Hypothesis 1a: Little to no difference in **germination** between herbaceous perennials and annuals

- No statistical difference between the two
- Trend of annuals to germinate more reliably
- Many perennial seed imbibed but did not germinate within allowable time frame

Hypothesis 1b: Little to no difference in **germination** between stratified and non-stratified *Astragalus* seeds

Hypothesis 1b: Little to no difference in germination between stratified and non-stratified *Astragalus* seeds

Stratification has a positive effect on germination in both herbaceous perennials and annuals

Treatment

Astragalus perennials and annuals

generalized linear mixed-effects model in R

Hypothesis 2: Little to no difference in **seedling growth rates** between herbaceous perennials and annuals

Hypothesis 2: Little to no difference in **seedling growth rates** between herbaceous perennials and annuals

generalized linear mixed-effects models in R

Hypothesis 3: Little to no difference in biomass allocation between herbaceous perennials and annuals

A. nuttallianus annual

A. canadensis perennial

Hypothesis 3: Little to no difference in biomass allocation between herbaceous perennials and annuals

factorial analysis of variance in R

Herbarium collections provide an innovative resource for agricultural studies

- Morphological and genetic record
- Catalogue of wild relatives
- Large temporal and geographic sample space
- Document changes in species over time, environmental gradients, etc.
- Preserve species from areas that have been altered

10 specimens/species9 characters/specimen~5 measurements/character

Vegetative:

- Rachis length
- Leaflet number
- Stem length
- Stem width

Reproductive:

- Seed mass
- Pod length
- Pod width
- Inflorescence length
- Flower number

Overall positive correlations among Astragalus

Reproductive Characters

Overall positive correlations among annuals

Reproductive Characters

Positive AND negative correlations among perennials

-1

Reproductive Characters

Spearman's rank correlation matrices in R

Vegetative Characters

Positive AND negative correlations among perennials

Reproductive Characters

Astragalus canadensis

Astragalus canadensis

Astragalus canadensis

Astragalus crassicarpus

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

Astragalus canadensis

Astragalus crassicarpus

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

1. No difference in germination

- 1. No difference in germination
- 2. No difference in seedling growth rate

- 1. No difference in germination
- 2. No difference in seedling growth rate
- Trend towards greater root mass allocation in perennials

- 1. No difference in germination
- 2. No difference in seedling growth rate
- Trend towards greater root mass allocation in perennials
- Evidence for correlations between reproductive and vegetative structures

Take-home messages:

• Similar physiological characteristics in young plants

Take-home messages:

- Similar physiological characteristics in young plants
- More work is needed to confirm correlation patterns observed in reproductive and vegetative structures

Take-home messages:

- Similar physiological characteristics in young plants
- More work is needed to confirm correlation patterns observed in reproductive and vegetative structures
- Both live plants and herbarium collections can inform our understanding of herbaceous perennials and agricultural questions

Annual Monoculture

Perennial Polyculture

Acknowledgements

Thanks for all of your support!

Dr. Allison I. Miller **Sterling Herron** Dr. Claudia Ciotir **Emma Bergh** Dr. Wendy Applequist Dr. Monica Carlsen Dr. Peter Hoch Dr. Matthew Albrecht Derek Lyle and the Missouri Botanical Garden greenhouse staff The Miller Lab, Saint Louis University Dr. Christy Edwards and the Next-Gen **Sequencing Journal Club** Brandon Schlautman, Wes Jackson and The Land Institute **MOBOT** herbarium staff

Thanks for all of your support!

Dr. Steven Wolverton Dr. Lisa Nagaoka Claire Waldman, Joseph Smith, and the MOBOT REU interns of 2017 MOBOT Center for Conservation and Sustainable Development staff Dr. William Moen and the UNT McNair Program staff

Astragalus nuttallianus © Marylin M. Knight

SummerSherrod@my.unt.edu