RainScape Rebates Program

Round 3 2014
The RainScape Rebates program is funded by:

- Great Rivers Greenway
- Mabel Dorn Reeder Foundation
- Metropolitan St. Louis Sewer District
- Missouri Department of Conservation
- Participating municipalities
- US EPA Region 7 through the Missouri Department of Natural Resources (subgrant number G11-NPS-15, under Section 319 of the Clean Water Act)

Download Application PDF
deercreekalliance.org

online resource:
RainScaping Guide
mobot.org/rainscaping
What is RainScaping?

RainScaping Quick Links

What is RainScaping?
Why RainScaping?
 › Benefits & Goals
How to RainScape
 › What Do You Know About Your Site?
 › Is a Rain Garden Right for Your Site?
 › Design & Build a Rain Garden
 › Select Other RainScaping Options
 › Select Plants
Landscaping Options:
 › Lawn Alternatives
 › Soil Amendments & Mulching
 › Yard Management
 › Woodland Restoration
 › Creek Corridor Vegetative Buffers
 › Rain Gardens
 › Vegetated Bioswales
 › Rock Weirs & Sock Dams
 › Rainwater Harvesting
 › Permeable Pavement
 › Green Roofs

Resources:

The Missouri Botanical Garden RainScaping Guide is partially funded by the Mabel Bown Reader Foundation and USEPA Region 7 through the Department of Natural Resources (Subgrant number 66-NPS-15), under Section 319 of the Clean Water Act.
Why RainScape?

Funder/Program Design Goals:
Clean Water Act 1972 – to attain clean water that is fishable and swimmable
Goals and Benefits:

Improve water quality:
- Reduce volume and velocity of runoff
- Reduce pollutants – remove them at the source
- Reduce property damage due to erosion & flash flooding
- Restore % of pre-development hydrology

Extra benefits:
- Create sustainable solutions using plant-based options
- Increase regional biodiversity
- Provide educational opportunities to encourage good stewardship of resources
Capture Water Onsite

Local Hydrologic Cycle

Before Construction

- Interflow
- Baseflow
- Surface Runoff
- Evapotranspiration
- Canopy Interception

After Construction

- Interflow
- Baseflow
- Surface Runoff
- Evapotranspiration
Landowner Design Goals

- Solve landscape problems
- Increase biodiversity & wildlife habitat
- Increase property values/aesthetic addition
- Contribute towards clean water
- Conserve soil
- Save energy
- Enhance mental well-being
- Reduce watering needs
- Reduce air pollution
- Provide educational opportunities
RainScaping Guide: Soil Amendments & Mulching

Amending Soil to Improve Infiltration Rates

Incorporating compost-amended topsoil, well-aged compost, calcined clay and/or expanded shale, are recommended strategies for improving soil infiltration rates. In addition, topping the garden with annual application of organic mulch is a key ingredient for reducing compaction and improving soil quality and infiltration capacity. This will, in turn, improve plant growth and root systems which increase the ability of the soil to absorb water over time.

Adding sand in insufficient quantities can result in a concrete-like soil texture that does not drain; therefore adding sand is NOT recommended.

For more detailed soil amendment and mulching recommendations see Conquer Compacted Soils.

For guidance on fertilizing your yard see Fertilizer Management.

DO NOT add sand to native soil to improve permeability = sand + clay + lime = bricks
Soil is Nature’s Pipeline
Healthy organic topsoil is more permeable
RainScaping Guide: Lawn Alternatives

Lawn Reduction to Capture Run-off

Turf, both above and below the soil surface, has very little biomass in comparison to larger perennials, shrubs and trees. The shallow root system of turf prevents the soil from maintaining its permeability (ability to soak up water), and in some cases may result in the formation of an impermeable clay shelf below the grass. Large expanses of irrigated and mowed lawn contribute to significant amounts of runoff that can contain pesticides and fertilizers.

Replace turf with trees, shrubs, perennials and/or prairie gardens along with optional soil amendments and mulching to more effectively manage rainwater in your yard.

For more detailed lawn reduction recommendations see Transform Turf.
Lawn Alternatives
Listed as lawn alternative, woodland restoration and creek corridor vegetative buffer

• Pick one!!!
• Where is the woodland?
• Mowed turf to creek bank is not a buffer
• Lawn alternative = no mowed lawn
Good examples of lawn alternatives...
Trees and RainScaping

Protect your trees and add native species whenever possible.
RainScaping Guide: Woodland Restoration

If your site is currently wooded, restoring a mix of healthy woodland vegetation is an effective rainwater management strategy.

Removal of invasive plant species (for example, bush honeysuckle) and long term control of all invasive species is essential in the successful restoration of woodland. Invasive species destroy the native ecosystem and out-compete native plants for nutrients, light and moisture. If these species are not controlled, they will continue to spread rapidly and diminish biodiversity as they overtake the woodland.

Following removal of invasive species, replant with mix of native plant species that is appropriate for your particular woodland (dry,
Woodland Restoration
bush honeysuckle was removed, new trees and shrubs were planted with some ground floor perennials added in
This was listed as woodland restoration…
So where is the woodland???
RainScaping Guide: Creek Corridor Vegetative Buffers

A creek corridor is the transitional zone where land and stream come together. The land and riparian vegetation or plants that live along a waterway form the creek corridor and create a vegetative buffer strip along the stream. This buffer strip is essential to the health of the stream as it absorbs runoff, reduces erosion, filters out pollutants, shades the stream and provides food and habitat for a number of terrestrial and aquatic species.
Good creek corridor vegetated buffer clean-up and planting

Bad creek corridor vegetated buffer clean-up and planting
Compost sock check dams or rock weirs (a pile of stones lined up to slow down the flow of water on a hill) are used in place of traditional sediment and erosion control such as silt fences and straw bales. They:

- are used to control and keep sediment from soil erosion from flowing downhill, as is the case in newly constructed rain gardens or bioswales where soil has been exposed.
- slow the velocity of the flow of water, either at the inlet to the rain garden, the overflow of a rain garden or on a slope, thus reducing the potential for erosion.
- when placed at intervals along a bioswale, they slow down the velocity of water flowing through a bioswale.
- when used on hard surfaces, they prevent sediment from flowing into other areas.
- aid infiltration of water into the soil by slowing water flow.

For more details on how and when to use check dams and weirs, see Stabilize Steep Slopes.
Rock Weirs
RainScaping Guide: Green Roofs

Green roofs, also known as living or vegetated roofs, consist of plants and specialized soil over a protective, waterproof membrane that is laid on top of an existing roof structure. The plant palette is comprised of species that are able to tolerate high heat and dry conditions, such as native glade species and non-native plants such as *Sedum* or creeping thyme.

A green roof captures, slows down and reduces the quantity of rainfall before it enters the gutter. Green roofs also add energy savings by insulating the roof thus reducing heating and cooling costs. The existing roof must be reinforced to carry the additional weight load, anywhere from 15–30 lbs./sq. ft. or more depending on the depth of the soil. While installation of a green roof is initially more expensive than a conventional roof, a green roof has a much longer life span than a conventional roof. Approximate costs may range from $15/sq. ft. to $25/sq. ft. or more depending on the depth of the green roof soil and the specific plants used in the planting. When considering installing a green roof, it is recommended that you consult with an engineer/architect and a reputable roofing company well-versed in installing green roofs.

See our Green Roof Resources section for more information.
• Work with an engineer to reinforce the roof
• Work with a knowledgeable roofing company
• Use plants adapted to the harsh, hot and dry environment
RainScaping Guide: Rainwater Harvesting

Rain Barrels
Rain barrels are a small version of an above-ground cistern. They can range in size from 50 to 200 gallons, in contrast to cisterns that range in size from 100 to 1500 gallons or more. Rain barrels decrease rainwater runoff by collecting and storing rainwater from the roof. In addition, rain barrels provide, at no additional cost, chlorine-free water for use in watering plants and other water needs in the landscape.

A rain barrel is a barrel fitted with an upper (overflow) spigot and a lower spigot (for use in watering vegetation, etc.). The top is fitted with a screen or filter to keep debris and insects out of the barrel. It is a simple design that is inexpensive to construct. Rain barrels should be placed under a gutter downspout, with the downspout directed into the top of the rain barrel. It is helpful to elevate the rain barrel off the ground since the output for watering is gravity flow. The overflow spigot at the top of the rain barrel should have a hose connected that is directed into a rain garden or other landscape planting. More than one rain barrel can be used at each gutter downspout by connecting them together with the overflow spigot, or consider a larger above- or below-ground cistern for harvesting a higher volume of rainfall.

There are many models to choose from, or you can build your own. To build your own rain barrel download the River des Peres Watershed Coalition’s Rain Barrel Building Instructions and Installation Guide or purchase an already-constructed rain barrel by downloading an order form.

Cisterns
A cistern is a water storage tank installed either underground or above ground (size varies from 100 gallons to 1500 gallons or more). Water is captured and stored from gutter downspouts diverted into the cisterns, making it available for later use. The most common use is for watering the surrounding landscape. A household shallow well pump can be installed to pump and distribute this stored water from the tank to a hose bib for watering, or may be connected directly to drip irrigation equipment, etc. This cost-free source of water contains less minerals and chemicals and aids in healthier plant growth.
Rain Barrels and Cisterns
A bioswale is a linear, shallow, planted depression that guides water away from its entry point on the property (gutter downspouts, uphill properties, etc.) and towards a rain garden. Bioswales are also useful for directing water from a rain garden (in the event the rain garden overflows) and towards its exit point on the property or simply to guide water as it moves through the property. These swales are planted or seeded with moisture-loving plant species that are also tolerant of seasonal fluctuations in moisture levels. The plants' structure aids in reducing the flow rate of rainwater runoff and enhances the soil's absorption of water even before it enters the rain garden retention area or exit point.

Bioswales can be constructed independent of a rain garden if circumstances don’t allow for the installation of a rain garden (such as limited space or steep, narrow sites). In this case, they guide water to existing storm-water systems such as storm drains in roadways, etc.

Where volume and velocity of water is high, a constructed dry creek bed made of gravel may substitute for a vegetated bioswale. Vegetated swales are preferred, however, as Meramec River gravel is typically the source of gravel in the Greater St. Louis Region, and gravel mining is known to be a major contributor to water quality degradation in the Meramec River watershed.
Bioswale
A french drain is not a bioswale – where are the plants???
Bioswale ending in a rain garden
A rain garden slows the flow of rainwater runoff by using elements similar to those that occur in nature: plants, stone, shallow swales and depressions that catch and hold rainwater rather than let it run off unhindered. Plants that offer a diversity of both deep and fibrous root systems help make the soil more permeable, sponge-like and able to absorb a large amount of rainfall. Native plants are typically preferred due to their hardy nature. Water gathers temporarily in shallow depressions and is absorbed by the soil and plants as well as being filtered as it percolates through the soil horizon.

There are two major categories of rain garden design:

1. **Native Soil Rain Garden**
 A homeowner who plans to install a rain garden where no development or redevelopment is taking place may prefer this low cost option. Soil pore space is gradually improved over time through the combined interactions of added well-aged compost, mulch, microbes, and deep rooted plants. Plants that are able to tolerate primarily moist (and sometimes dry) soils thrive best in these environments. A rain garden is not necessarily the right solution for your site. For detailed guidance on where and how to install a native soil rain garden, as well as recommended alternatives to rain gardens under certain conditions, see [How to RainScape](#). For a comprehensive overview of rain garden design using an intuitive visual interface, check out this [interactive graphic](#) from the University of Nebraska–Extension.

2. **Engineered Bioretention System**
 Where development or redevelopment is occurring engineered bioretention may be specified. The commercially designed rain garden requires the removal of existing soil and replacement with a 60–80 percent sandy soil mix, typically along with a piped underdrain. Plants that are able to tolerate primarily dry (and sometimes wet) soils thrive best in these environments. For more information on how to design an engineered bioretention system download the [MSD Landscape Guide for Stormwater Best Management Practices](#).
Native Soil Rain Garden
Bioretention System
How to RainScape

For guidance on which RainScaping features will work best in your yard and how to install them, follow our RainScaping Flowchart below. Click on a step to go to that section:

1. What Do You Know About Your Site?
2. Is a Rain Garden Right for Your Site?
 - NO: Select Other RainScaping Options
 - YES: Design & Build a Rain Garden
What do you know about your site?

Identify Problem Areas

Identifying problem areas on your property helps determine your goals and indicates choices for specific landscape options to solve problems.

Topography and Flow

Observe the topography of your property and note how water flows during periods of heavy rainfall, as well as where offsite water enters the property. Other potential problem areas to record on your map include steep slopes, ponding in low wet areas, areas of recent construction and utility lines.

Utilities

Be sure to include overhead utilities on your map. In addition, call 1 (800) DIG-RITE to have all underground utilities identified and add them to your map as well.

Continue on to Identify Slope & Drainage

Identify Slope & Drainage

Identify Human Use Areas

Identify Existing Vegetation

Identify Shade/Sun Patterns

Understand Your Soil

Is a Rain Garden Right for Your Site?
Overview of Landscape Elements for Rainscaping

- Permeable paving
- Perennial/shrub planting beds
- Rain garden
- Perennials, shrubs and trees planted in low, wet area of yard
- Rain barrels
- Planted bioswale connecting small rain gardens
- Trees
Sample Homeowner Plan

Spruce Street
- Scale for drawing
- Orientation of property to North
- House and other buildings
- Above ground utility lines
- Below ground utilities
- Downspout on house
- Direction of slope
- Existing tree
- Proposed tree
- Existing shrub
- Proposed shrub
- Existing herbaceous planting
- Proposed herbaceous planting
- Percolation test location
- Rain garden outline
- Underground pipe
Good overview and actual plans
#2 Lawn Alternative to Catch Runoff from Driveway

- **Turf**
- **Flagstone Path**
- **Existing Dogwood**
- **Existing Shrub**
- **Existing Hedge**

Plant List/Key for Planting #2:

<table>
<thead>
<tr>
<th>Code</th>
<th>Quantity</th>
<th>Plant Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1 qt</td>
<td>Carex albicans</td>
<td>Carex albicans</td>
</tr>
<tr>
<td>7</td>
<td>1 gal</td>
<td>Chelone obliqua</td>
<td>Chelone obliqua</td>
</tr>
<tr>
<td>6</td>
<td>1 qt</td>
<td>Polemonium reptans</td>
<td>Polemonium reptans</td>
</tr>
</tbody>
</table>

Scale: 1/4" = 1 ft

#3 Lawn Alternative on Steep Slope

Plant List/Key for Planting #3:

<table>
<thead>
<tr>
<th>Code</th>
<th>Quantity</th>
<th>Plant Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1 qt</td>
<td>Aster alhagiolius</td>
<td>Aster alhagiolius</td>
</tr>
<tr>
<td>13</td>
<td>1 gal</td>
<td>Flex verticillata rubra</td>
<td>Flex verticillata rubra</td>
</tr>
<tr>
<td>12</td>
<td>1 gal</td>
<td>Fraxinus ornus Lo</td>
<td>Fraxinus ornus Lo</td>
</tr>
<tr>
<td>12</td>
<td>1 gal</td>
<td>Rhododendron catawbiense</td>
<td>Rhododendron catawbiense</td>
</tr>
<tr>
<td>11</td>
<td>1 gal</td>
<td>Sambucus nigra</td>
<td>Sambucus nigra</td>
</tr>
<tr>
<td>10</td>
<td>1 gal</td>
<td>Sporobolus heterolepis</td>
<td>Sporobolus heterolepis</td>
</tr>
</tbody>
</table>

Scale: 1/4" = 1 ft

Legend:

- **AS:** Asters
- **CH:** Chelone obliqua
- **CA:** Carex alba
- **CH:** Chelone obliqua
- **FO:** Polemonium reptans
NOT a good overview example

- Scale not indicated, but some measurements are included
- Individual plant placement and numbers not indicated
- Location of percolation test not indicated
- North orientation not indicated
- Is it a bioswale or a lawn alternative? Says both for one feature?
- There was not an overview of the property showing the future location of the rainscaping features.
Good plant list with all required aspects

<table>
<thead>
<tr>
<th>Plant genus & species</th>
<th>How many</th>
<th>Spacing</th>
<th>Container size</th>
<th>Native?</th>
<th>Price each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black chokeberry (Ardisia melanocarpa)</td>
<td>1</td>
<td>4"</td>
<td>Quart (4.5in x 5) yes</td>
<td>4.75</td>
<td></td>
</tr>
<tr>
<td>Cardinal flower (Lobelia cardinalis)</td>
<td>8</td>
<td>18"</td>
<td>2/3/In x 5 yes</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>Celandine poppy (Saponaria officinalis)</td>
<td>5</td>
<td>18"</td>
<td>2/3/In x 5 yes</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>Christmas fern (Polystichum acrostichoides)</td>
<td>4</td>
<td>18"</td>
<td>Quart (4.5in x 5) yes</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>Cinnamon fern (Osmunda cinnamomea)</td>
<td>3</td>
<td>18"</td>
<td>Quart (4.5in x 5) yes</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>Columbine (Aquilegia canadensis)</td>
<td>5</td>
<td>18"</td>
<td>2/3/In x 5 yes</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>Copper iris (Iris fulva)</td>
<td>4</td>
<td>18"</td>
<td>Quart (4.5in x 5) yes</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>Crested Iris (Iris cristata)</td>
<td>4</td>
<td>18"</td>
<td>Quart (4.5in x 5) yes</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>Downy skullcap (Scutellaria incana)</td>
<td>4</td>
<td>18"</td>
<td>Quart (4.5in x 5) yes</td>
<td>4.60</td>
<td></td>
</tr>
<tr>
<td>Globe sedge (Carex grayi)</td>
<td>5</td>
<td>18"</td>
<td>2/3/In x 5 yes</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>Great blue lobelia (Lobelia siphilitica)</td>
<td>3</td>
<td>18"</td>
<td>2/3/In x 5 yes</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>Indian pink (Spigelia marilandica)</td>
<td>4</td>
<td>18"</td>
<td>2/3/In x 5 yes</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>Lady fern (Thelysoma)</td>
<td>3</td>
<td>18"</td>
<td>2/3/In x 5 yes</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>Oak sedge (Carex albicans)</td>
<td>10</td>
<td>18"</td>
<td>Quart (4.5in x 5) yes</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>Spider lily (Hymenocallis lutea)</td>
<td>10</td>
<td>18"</td>
<td>2/3/In x 5 yes</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>Virginia sweetspire (Lisa Virginia)</td>
<td>3</td>
<td>18"</td>
<td>Quart (4.5in x 5) yes</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>Wild ginger (Asarum canadense)</td>
<td>12</td>
<td>18"</td>
<td>2/3/In x 5 yes</td>
<td>4.75</td>
<td></td>
</tr>
<tr>
<td>Woodland Phlox (Phlox divaricata)</td>
<td>6</td>
<td>18"</td>
<td>2/3/In x 5 yes</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>Woodland spiderwort (Tradescantia virginiana)</td>
<td>5</td>
<td>18"</td>
<td>2/3/In x 5 yes</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>Zigzag goldenrod (Solidago flexiculus)</td>
<td>6</td>
<td>18"</td>
<td>Quart (4.5in x 5) yes</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bad plant list - original plant list is not on same page/incomplete and final doesn’t match very well

Plants and Material list cost:

<table>
<thead>
<tr>
<th>QTY</th>
<th>VARIETY</th>
<th>SIZE</th>
<th>UNIT</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RAIN GARDEN PROJECT</td>
<td>15.00</td>
<td>USD</td>
<td>60.00</td>
</tr>
<tr>
<td>2</td>
<td>PLANTS AND MATERIALS</td>
<td>12.00</td>
<td>USD</td>
<td>48.00</td>
</tr>
<tr>
<td>3</td>
<td>4 RIVER CATS PLANTS</td>
<td>14.00</td>
<td>USD</td>
<td>88.00</td>
</tr>
<tr>
<td>4</td>
<td>4 SWEET FLAG PLANTS</td>
<td>14.00</td>
<td>USD</td>
<td>88.00</td>
</tr>
<tr>
<td>5</td>
<td>1 VIBURNUM PLANTS</td>
<td>14.00</td>
<td>USD</td>
<td>88.00</td>
</tr>
<tr>
<td>6</td>
<td>4 CLETHRA PLANTS</td>
<td>14.00</td>
<td>USD</td>
<td>88.00</td>
</tr>
<tr>
<td>7</td>
<td>3 HYDRANGEA PLANTS</td>
<td>14.00</td>
<td>USD</td>
<td>88.00</td>
</tr>
<tr>
<td>8</td>
<td>COMPOST AND HARDWOOD MULCH</td>
<td>14.00</td>
<td>USD</td>
<td>88.00</td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL</td>
<td>14.00</td>
<td>USD</td>
<td>$676.00</td>
</tr>
<tr>
<td></td>
<td>TAX</td>
<td>14.00</td>
<td>USD</td>
<td>55.00</td>
</tr>
<tr>
<td></td>
<td>LABOR</td>
<td>14.00</td>
<td>USD</td>
<td>150.00</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>14.00</td>
<td>USD</td>
<td>$881.00</td>
</tr>
</tbody>
</table>
Genus + species not listed w/common name
Size of container and cost per plant not listed
Spacing of plants not indicated
Source/where purchasing the plants is not listed per plant

NOT a good plant list
IS a good plant list

<table>
<thead>
<tr>
<th>Qty</th>
<th>Plant</th>
<th>Scientific</th>
<th>MO</th>
<th>Native</th>
<th>Size</th>
<th>Cost</th>
<th>TOTAL</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Eastern Redbud</td>
<td>cerasus canadensis</td>
<td>Yes</td>
<td>1.5 - 1.75</td>
<td>$62.00</td>
<td>$186.00</td>
<td>Glueck</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dogwood</td>
<td>cornus florida</td>
<td>Yes</td>
<td>4' - 5'</td>
<td>$33.70</td>
<td>$101.10</td>
<td>Glueck</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Hydrangea Oakleaf</td>
<td>Quercifolia "Alice"</td>
<td>Yes</td>
<td>#3</td>
<td>$16.50</td>
<td>$99.00</td>
<td>Glueck</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ostrich Ferns</td>
<td>matteuccia struthiopteris</td>
<td>Yes</td>
<td>3.5" pot</td>
<td>$6.98</td>
<td>$41.88</td>
<td>American Meadows</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Variegated Sweet flag</td>
<td>acorus calamus "Variegatus"</td>
<td>bare root</td>
<td>$5.07</td>
<td>$30.42</td>
<td>Vermont Wildflower Farm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rhododendron "Mary Fleming"</td>
<td>Rhododendron "Mary Fleming"</td>
<td>#5</td>
<td>$31.60</td>
<td>$94.80</td>
<td>Glueck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rhododendron "Stewartsonian"</td>
<td>Rhododendron "Stewartsonian"</td>
<td>#6</td>
<td>$31.00</td>
<td>$93.00</td>
<td>Glueck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Black Chokeberry</td>
<td>Aronia melanarpa 'Morton'</td>
<td></td>
<td>$29.00</td>
<td>$58.00</td>
<td>Glueck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dawn Redwood</td>
<td>mesasequioa glyptostroboideis</td>
<td>1 1/4 - 1 1/2</td>
<td>$41.50</td>
<td>$41.50</td>
<td>Glueck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Virginia Bluebells</td>
<td>martensia virginica</td>
<td>bare root</td>
<td>$8.49</td>
<td>$42.45</td>
<td>American Meadows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Solomon's Seal</td>
<td>Polygononum biforum</td>
<td>Yes</td>
<td>4" Pot</td>
<td>$6.99</td>
<td>$62.91</td>
<td>Prairie Nursery</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Eastern Star Sedge</td>
<td>carex radiata</td>
<td>Yes</td>
<td>4" pot</td>
<td>$4.99</td>
<td>$74.85</td>
<td>Prairie Nursery</td>
<td></td>
</tr>
</tbody>
</table>

AREA 2: Woodland Restoration

2. New Plants to be installed

- **Rain Garden:**
 - 3 Viburnum burkwoodii "Mohawk" | Burwood Viburnum | Yes | 88 30 - 36" | $25.00 | $75.00 | Glueck |
 - 9 Brown eyed Susan | Rudbeckia triloba | Yes | $3.99 | $35.91 | Prairie Nursery |
 - 9 Great Blue Lobelia | lobelia siphilitica | Yes | $3.99 | $35.91 | Prairie Nursery |
 - 3 Coneflower | Magnus Purple | Yes | #1 | $6.50 | $19.50 | Glueck |
 - 8 Coneflower | Big Sky Sundown | #1 | $10.50 | $84.00 | Glueck |
 - 4 Praire Mallow | hibiscus lasiocarpus | Yes | potted | $6.99 | $27.96 | Fields |
 - 6 Ligularia "The Rocket" | Bare root | Yes | $4.96 | $29.76 | American Meadows |
Is a Rain Garden Right for your Site?

1. Is the site a woodland?
 - YES: Work Wonders with Woodlands
 - NO: Does a percolation test indicate good drainage?

2. Does a percolation test indicate good drainage?
 - NO: Conquer Compacted Soils
 - YES: Is the site on a gentle or moderate slope?

3. Is the site on a gentle or moderate slope?
 - NO: Stabilize Steep Slopes
 - YES: Design & Build a Rain Garden
 - Let Loose on Low Wet Areas
Percolation Test
to determine rate of water infiltration into the soil

- Do I need to amend the soil to make it more permeable?
- Is the site suitable for a rain garden?

Percolation Test Steps:
1. Dig a hole 12” deep by 6” in diameter.
2. Fill hole with water and let stand until all the water has drained into the ground (this will give you saturated soil conditions).
3. Refill the empty hole with water again. Measure the depth of the water with a ruler.
4. Check the depth of water with a ruler every hour for at least 4 hours.

A rate of .25 to 1.5 inches/hour is considered adequate to ideal for a rain garden.
Options:

- Amend the soil with compost
- Use an auger to drill holes and fill with compost
- Find a more well-draining site for the rain garden
- Consider a different rainscaping option
Select Other RainScaping Options

- lawn alternatives
- green roof
- permeable pavers
- rainwater harvesting
- soil amendments & mulching
- yard management
- woodland restoration
- creek corridor vegetative buffer
- rain garden
- rock weirs & sock dam
- bioswale
RainScaping Guide: Soil Amendments & Mulching

Amending Soil to Improve Infiltration Rates

Incorporating compost-amended topsoil, well-aged compost, calcined clay and/or expanded shale, are recommended strategies for improving soil infiltration rates. In addition, topping the garden with annual application of organic mulch is a key ingredient for reducing compaction and improving soil quality and infiltration capacity. This will, in turn, improve plant growth and root systems which increase the ability of the soil to absorb water over time.

Adding sand in insufficient quantities can result in a concrete-like soil texture that does not drain; therefore adding sand is NOT recommended.

For more detailed soil amendment and mulching recommendations see Conquer Compacted Soils.

For guidance on fertilizing your yard see Fertilizer Management.

Click on a landscaping option from the graphic below to learn more about that topic:

RainScaping Quick Links

What is RainScaping?
Why RainScape?
 ◦ Benefits & Goals
How to RainScape
 ◦ What Do You Know About Your Site?
 ◦ Is a Rain Garden Right for Your Site?
 ◦ Design & Build a Rain Garden
 ◦ Select Other RainScaping Options
 ◦ Select Plants

Landscaping Options:
 ◦ Lawn Alternatives
 ◦ Soil Amendments & Mulching
 ◦ Yard Management
 ◦ Woodland Restoration
 ◦ Creek Corridor Vegetative Buffers
 ◦ Rain Gardens
 ◦ Vegetated Bioswales
 ◦ Rock Weirs & Sock Dams
 ◦ Rainwater Harvesting
 ◦ Permeable Pavement
 ◦ Green Roofs

Resources

The Missouri Botanical Garden RainScaping Guide is partially funded by the Missouri Department of Natural Resources.
Amending Soil

- NO sand
- Mulch
- Well-aged compost
- Topsoil (silt loam only)
- Mycorrhizal inoculant
- Calcined clay “Turface”
- Expanded gypsum
- Aeration backfilled with compost
- Tilling
- Plants with robust root structures
Organize Water Flow

Several options exist when deciding how to direct water into the rain garden:

- When designing a rain garden to manage runoff from the roof, redirect your gutter downspout(s) to point towards your rain garden and reroute the water through an underground pipe or a bioswale.
- If a rain barrel has been installed on the gutter downspout, redirect the overflow from the rain barrel to the rain garden through an underground pipe or a bioswale.
- In some cases, the topography of the property allows for a natural flow of water. Take advantage of this when designing a rain garden and/or bioswale.
- Be sure to reinforce the area where water enters the rain garden if there is a potential for erosion with erosion netting and/or stone.
- It may be a good idea to leave your rain garden “off line” for an initial period. By allowing time for your plants to become well-established in your rain garden before redirecting gutter downspouts or adding the directional pipe or bioswale to route water to your rain garden, the plants will become strong and tall enough to withstand flooding.

» Continue on to Select Plants
What is a rain garden?

A rain garden mimics natural watersheds and wetlands
A) Planted with shrubs, tall grasses, ferns and perennials

B) Dry creek with pebbles, river stone, boulders and plants

C) On a slope, create a depression on the upper side and a berm on the lower side

All options over sandy to loam soil with organic matter. Infiltration bed under the surface as shown in option A applies to all options.
Great way to get water across driveway to rain garden or other option
Rain gardens have a basin that is obvious -- otherwise it is a lawn alternative.
Listed as a rain garden but was too close to the house and is a basin filled with stone not plants.
• Locate rain garden perpendicular to flow of water and near the source
• Always protect soil from compaction and erosion
• Basin should be 4-8"
• Size = approx. 20-30% of surface draining towards rain garden
• A rain garden should be no closer than 10 ft. from a building
• Do not add sand to native soil (sand + clay + lime = bricks!)
• Do not disturb tree roots – protect the trees!
• Do not build in low area or over septic systems/sinkholes
• More clay, less drainage = larger rain garden or make soil more permeable. OR-find a more suitable location or option.
• Grade to ensure that water flows from source to rain garden
Use biodegradable erosion blanket where needed
Install a temporary bypass during establishment phase of rain garden and/or bioswale
Protect area from siltation
Use permanent erosion blanket and gravel/stone in areas of high energy water flow
Surrounding terrain that drains into the rain garden

Transition zone of the rain garden

Bioswale

Surrounding terrain that drains into the rain garden

Rain garden basin
Rain gardens of any size will reduce the quantity and velocity of storm water runoff.

Any reduction is a benefit!
If you don’t think you can make a difference
Consider this…
A one inch rainfall = 27,154 gallons/acre
The average annual rainfall in St. Louis is 38.75 inches
That equals 1,052,217 gallons per year/acre!!!
Design Styles

Reconstructed wetlands?
Maintenance of Rain Gardens

- Keep the input and overflow clean and free of debris
- Check periodically to be sure the rain garden is draining and there is not an impermeable “crust” on the surface
- Don’t use inorganic fertilizer, use compost
- Don’t use pesticides

Basic maintenance is the same as any other garden:
- Water during establishment and during drought
- Maintain a 2-4” layer of organic mulch
- Keep garden/bioswale weeded at all times
- Remove any dead and/or unsightly plant parts
- Don’t remove dormant plant parts until early spring
- Always maintain a clean edge
Sample Maintenance Schedule

<table>
<thead>
<tr>
<th>MONTH(S)</th>
<th>MAINTENANCE</th>
<th>WEEKLY</th>
<th>MONTHLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan-Feb</td>
<td>Check for and remove trash and debris</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mar-May</td>
<td>Remove dead plant parts; replace any mulch where needed; thin any crowded/overgrown plants</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Check for erosion & excessive ponding during storms</td>
<td>as</td>
<td>needed</td>
</tr>
<tr>
<td></td>
<td>Weed; water during drought; tidy up garden as needed</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plant/replant as needed</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>June-Aug</td>
<td>Check for erosion & excessive ponding during storms</td>
<td>as</td>
<td>needed</td>
</tr>
<tr>
<td></td>
<td>Weed; water during drought; tidy up garden as needed</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sept-Oct</td>
<td>Check for erosion & excessive ponding during storms</td>
<td>as</td>
<td>needed</td>
</tr>
<tr>
<td></td>
<td>Weed; water during drought</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plant/replant as needed</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Check pH 1x/year-adjust if necessary as indicated by test</td>
<td>*1x/yr</td>
<td></td>
</tr>
<tr>
<td>Nov-Dec</td>
<td>Replace mulch where needed</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Sample Maintenance Schedule

WEEKLY: in season
- Weed
- Water as needed
- Check for and fix erosion
- Keep a tidy look in the garden(s)
- Inspection for good general appearance of area/gardens

MONTHLY
- Clean out any trash, debris etc., esp. at input/output of rain gardens & bioswales

SPRING & FALL
- Replace mulch where needed
- Plant/replant as needed
- Scratch surface to prevent ‘crust’

ANNUALLY
- Check pH; adjust as indicated
Always maintain a clean edge to give a finished, ‘garden’ look.

Add elements that indicate intention.
RAIN GARDEN DEMONSTRATION PROJECT

Rain gardens treat and infiltrate stormwater, protect water supplies & reduce pollution to surface waters.

Designed and Built by Employees of Comprehensive Environmental Inc.

For more information:
www.ceiengineers.com
Select Plants
What considerations determine plant choices?

- Rain gardens consist of different moisture zones, therefore your plant list for each zone will be different.
- Size of project and budget will determine container size.
- Native or non-native plants or both?
- Seeding vs. planting or both?
Why choose native plants vs. non-native plants?

- Native plants enhance the habitat value of your property
- Native plants are well-adapted to the fluctuations in climate

The plant list does not determine the design style—the gardener/designer does!
Native wetland plants are well adapted to periods of flooding followed by periods of drought...
Location – dry vs. moist - determines plant choices

upper slope lower slope pond edge- seasonal inundation permanently submerged
Contrast foliar texture and plant form

Choose plants with different bloom times
Some top plants to use in rain gardens in sunny locations

In the basin...and on lowers slope

- Sedges (*Carex*)
- Rushes (*Juncus/Scirpus*)
- Spike rushes (*Eleocharis*)
Bluestar
Amsonia illustris
Swamp/marsh milkweed

Asclepias incarnata
Rose mallow -
Hibiscus lasiocarpus
Blue flag iris - *Iris virginica*

Copper iris - *Iris fulva*
Cardinal flower (*Lobelia cardinalis*)

Blue lobelia - *Lobelia siphilitica*
Switch grass

(*Panicum virgatum*)
Yellow coneflower - *(Rudbeckia fulgida)*
Shade species

Golden groundsel
Senecio aureus

Most sedges are shade tolerant

Cardinal flower
Lobelia cardinalis
Ferns

Ostrich fern
(Matteuchia struthiopteris)

Royal fern
(Osmunda regalis)

Sensitive fern
(Osmunda sensibilis)
Ilex verticillata - winterberry

Aesculus pavia – red buckeye

Hamamelus – witch hazel

A Few Shrubs & Small Trees

Aesculus pavia – red buckeye
Cephalanthus - buttonbush