# Aroid Species Diversity: Are we underestimating the number of aroids?

Thomas B. Croat P. A. Schulze Curator Missouri Botanical Garden

### megagenera with over 500

species

Conors of flowering plants with at loast 5

|      | Och                  | cia or now | cring plants with at icast 5 |
|------|----------------------|------------|------------------------------|
| Rank | Genus                | Species    | Family                       |
| 1    | <u>Astragalus</u>    | 3,270      | Fabaceae / Leguminosae       |
| 2    | <u>Bulbophyllum</u>  | 2,032      | Orchidaceae                  |
| 3    | <b>Psychotria</b>    | 1,951      | Rubiaceae                    |
| 4    | <u>Euphorbia</u>     | 1,836      | Euphorbiaceae                |
| 5    | Carex                | 1,795      | Cyperaceae                   |
| 6    | <u>Begonia</u>       | 1,484      | Begoniaceae                  |
| 7    | <u>Dendrobium</u>    | 1,371      | Orchidaceae                  |
| 8    | <u>Acacia</u>        | c. 1,353   | Fabaceae / Leguminosae       |
| 9    | <u>Solanum</u>       | c. 1,250   | Solanaceae                   |
| 10   | Senecio.             | c. 1,250   | Asteraceae / Compositae      |
| 11   | <u>Croton</u>        | 1,223      | Euphorbiaceae                |
| 12   | <b>Pleurothallis</b> | 1,120+     | Orchidaceae                  |
| 13   | <u>Eugenia</u>       | 1,113      | Mvrtaceae                    |
| 14   | <u>Piper</u>         | 1,055      | Piperaceae                   |
| 15   | <u>Ardisia</u>       | 1,046      | Primulaceae                  |
| 16   | <u>Syzygium</u>      | 1,041      | <u>Mvrtaceae</u>             |
| 17   | <b>Rhododendron</b>  | c. 1,000   | Ericaceae                    |
| 18   | <u>Miconia</u>       | 1,000      | Melastomataceae              |
| 19   | <u>Peperomia</u>     | 1,000      | Piperaceae                   |
| 20   | <u>Salvia</u>        | 945        | Lamiaceae / Labiatae         |
| 21   | Erica                | 860        | Ericaceae                    |
| 22   | <b>Impatiens</b>     | 850        | Balsaminaceae                |
| 23   | Cyperus              | 839        | Cyperaceae                   |
| 24   | <b>Phyllanthus</b>   | 833        | Phyllanthaceae               |
| 25   | Allium               | 815        | Amaryllidaceae               |
| 26   | <u>Epidendrum</u>    | 800        | Orchidaceae                  |
| 27   | <u>Vernonia</u>      | 800-1,000  | Asteraceae / Compositae      |
| 28   | <b>Lepanthes</b>     | c. 800     | Orchidaceae                  |
| 29   | <u>Anthurium</u>     | 789        | Araceae                      |
| 30   | <b>Diospyros</b>     | 767        | Ebenaceae                    |
| 31   | <b>Ficus</b>         | 750        | Moraceae                     |
| 32   | <u>Indigofera</u>    | 700+       | Fabaceae / Leguminosae       |
| 33   | <b>Justicia</b>      | c. 700⊡    | Acanthaceae                  |
| 34   | Silene               | 700        | Carvophyllaceae              |
| 35   | Oxalis               | 700        | Ovalidaceae                  |

Frodin, Taxon 53:753-776

| 2004 |
|------|
|------|

| Rank | Genus              | Species | Family                  |
|------|--------------------|---------|-------------------------|
| 36   | <u>Crotalaria</u>  | 699     | Fabaceae / Leguminosae  |
| 37   | <u>Centaurea</u>   | 695     | Asteraceae / Compositae |
| 38   | <u>Cassia</u>      | 692     | Fabaceae / Leguminosae  |
| 39   | <u>Eucalyptus</u>  | 681     | <u>Myrtaceae</u>        |
| 40   | <u>Oncidium</u>    | 680     | Orchidaceae             |
| 41   | Galium             | 661     | Rubiaceae               |
| 42   | <u>Cousinia</u>    | 655     | Asteraceae / Compositae |
| 43   | <u>Ipomoea</u>     | 650     | Convolvulaceae          |
| 44   | <u>Dioscorea</u>   | 631     | Dioscoreaceae           |
| 45   | <u>Cvrtandra</u>   | 622     | Gesneriaceae            |
| 46   | <u>Helichrysum</u> | 600     | Asteraceae / Compositae |
| 47   | <u>Ranunculus</u>  | 600     | Ranunculaceae           |
| 48   | <u>Habenaria</u>   | 600     | Orchidaceae             |
| 49   | <u>Schefflera</u>  | 584     | Araliaceae              |
| 50   | Ixora              | 561     | Rubiaceae               |
| 51   | <u>Berberis</u>    | 556     | Berberidaceae           |
| 52   | <b>Ouercus</b>     | 531     | Fagaceae                |
| 53   | <u>Pandanus</u>    | c. 520  | Pandanaceae.            |
| 54   | <u>Panicum</u>     | 500+    | Poaceae / Gramineae     |
| 55   | Eria               | 500     | Orchidaceae             |
| 56   | <u>Polygala</u>    | 500     | Polygalaceae            |
| 57   | <u>Potentilla</u>  | 500     | Rosaceae                |

Genera of flowering plants with at least 5

# Aroids with potentially large numbers of species

- Anthurium- Currently 1484; Anticipated, perhaps as many as 3000 species
- Philodendron- 487; Surely as many as 1500 species
- Homalomena- Believed by Peter Boyce to contain 500 species
- **Stenospermation** Possibly as many as 500 species. Currently have 128 species in New Lucid Key and few indetermined collections have been studied.



Reasons for Optimism that Species Diversity is much higher than anticipated.

- 1. Large growth in numbers of species of Araceae
- 2. **Comparative Studies** of Central America vs. South America
- 3. Use of Lucid Keys for any genus



# 1. Large growth in numbers of species of Araceae Most growth in the size of Araceae has occurred in the past 40 years

- Adelonema (42%)
- Anthurium (71%)
- Chlorospatha (66%)
- Dieffenbachia (77%)
- Dracontium (16%)
- *Monstera* (65%)
- Philodendron (70%)
- Rhodospatha (71%)
- Spathiphyllum (13%)
- Stenospermation (71%)
- Syngonium (43%)
- Xanthosoma (78%)

Evidence of great increases in the number of species in these genera



### Missouri Botanical Garden

# Best examples of growth are in Anthurium



# Engler's sections of Anthurium

|                   | Engler | Current |
|-------------------|--------|---------|
| Tetraspermium     | 4      | 3       |
| Gymnopodium       | 1      | 1       |
| Porphyrochitonium | 1      | 1       |
| Pachyneurium      | 54     | 25      |
| Polyphyllium      | 1      | 1       |
| Xialophyllium     | 43     | 30      |
| Polyneurium       | 47     | 23      |
| Urospadix         | 92     | 49      |
| Episiostenium     | 7      | 4       |
| Digitinervium     | 16     | 5       |
| Cardiolonchium    | 30     | 15      |
| Chamaerepium      | 2      | 1       |
| Calomystrium      | 27     | 24      |
| Belolonchium      | 90     | 54      |
| Semaeophyllium    | 24     | 19      |
| Schizoplacium     | 15     | 11      |

Most of Engler's sections were reduced owing to synonymy

# Growth in Size of Sections





# Growth in Size of Sections

|   |                   | Engler | Current |
|---|-------------------|--------|---------|
| • | Tetraspermium     | 3      | 45      |
| • | Porphyrochitonium | 1      | 243     |
| • | Xialophyllium     | 30     | 124     |
| • | Pachyneurium      | 25     | 120     |
| • | Multinervium      | 0      | 18      |
| • | Polyphyllium      | 1      | 4       |
| • | Leptanthurium     | 1      | 6       |
| • | Urospadix         | 92     | 49      |
| • | Episiostenium     | 7      | 4       |
| • | Digitinervium     | 5      | 45      |

# Growth in Size of Sections, cont.

|   |                      | Engler | Current |
|---|----------------------|--------|---------|
| • | Decurrentia          | 0      | 50      |
| • | Cardiolonchium       | 15     | 254     |
| • | Calomystrium         | 24     | 252     |
| • | Semaeophyllium       | 19     | 23      |
| • | Schizoplacium        | 11     | 7       |
| • | Dactylophyllium      | 0      | 27      |
| • | Andiphyllum          | 0      | 18      |
| • | Cordato-punctatum    | 0      | 5       |
| • | Undescribed Sections |        | 21      |

# Areas of Greatest Growth

- Anthurium sect. Polyneurium from Lita-San Lorenzo Region, 2018; Revision by Jordan Teisher; Carchi Prov. Revision by X. Delannay & REU Student Rob Wood & (2015)
- Anthurium sect. Belolonchium
  - Revision by Croat Jim Grib; REU Students Hartley & Hughes (2016) & Jim Grib
- Anthurium sect. Cardiolonchium
  - Revision by Croat & Bob Hormell; REU Student Clarice Guan (2016)
- Anthurium sect. Tetraspermium
  - Revision by Croat & Anbreen Bashir
- Anthurium sect. Calomystrium
  - Revision by Jere Deal & David Belt
- Anthurium sect. Xialophyllium
  - Revision by Croat & Jonathan Watt
- Anthurium sect. **Porphyrochitonium**, King of Species Growth



## Section Tetraspermium



Characterized by:

- elongated internodes
- glandular punctations
- berries with 2-4 seeds per locule
- chromosome base # 10





Increase from 3 to 45 species Being revised by Dr. Anbreen Bashir

7 Missouri Botanical Garden

# Section Porphyrochitonium



Characterized by:

- elongated glandular-
- punctate leaf blades
- short internodes
- persistent catapyll fibers
- berries 2 or more per locule
- chromosomes 2n = 29-31

Constituting the largest increase among the larger sections increasing from 28 to 243 species.



# **Section Pachyneurium**





Characterized by:

- mostly bird's nest habit
- involute vernation
- short internodes
- dense roots

Engler revised with 25 sp. (1905). Revised by Croat with 114 spp (1991). Today there are 120 spp. From 25 to 120, a 380% increase.





# Sect. Multinervia

Section novo, 16 species of which were included with sect. Pachyneurium (Croat, 1991).

Molecular studies show it to be distinct at sectional level.

A. holmnielsenii



Characterized by:

- involute vernation
- usually bird's nest habit
- inconspicuous primary lateral veins
- usually orange berries



# Sect. Polyphyllium

# Probable novel pollination syndrome

### Characterized by

- elongate internodes
- roots along internodes
- fruits with black shiny seeds

1 species included by Engler; currently 4 species



Characterized by

- epiphytes with short internodes
- roots with velamen
- heavily sheathed petioles
- chromosome base number 10

1 species treated by Schott & Engler, now 6 to 10

# A. barrieri



# Sect. Lepanthurium



Characterized by

# Sect. Decurrentia

- short internodes
- elongated epunctate blades
- New section by Croat (2005) initially with 6 species. Now with 50 species in the section.







# Sect. Xialophyllium

Characterized by

- elongated internodes
- leaves elongated
- A. microspadix

![](_page_18_Picture_5.jpeg)

Probably two natural groups

- 1. glossy & drying brown, fruits red to purplish
- 2. matte and drying matte, berries green to yellow

30 species included by Engler, now 124 species, a 313% increase.

### A. carnosum

![](_page_18_Picture_11.jpeg)

### A. mindense

![](_page_18_Picture_13.jpeg)

### Characterized by

- short internodes
- fibrous cataphyll fibers
- Possibly two sections
- blades semiglossy, moderately few veins.
- blades matte, primary lateral veins many

Engler treated 23 species; currently there are 188 species, an increase of 164%.

# Sect. Polyneurium

A. cuspidatum

A. albispadix

A corrugatum

A. alluriquinense

Characterized by:

# Sect. Urospadix

- mostly eastern Brazil
- mostly elongated blades
- sometimes punctate but not glandular-punctate.

Engler treated 92 species; now 89 owing to many which were not really sect. Urospadix.

![](_page_20_Picture_6.jpeg)

### A. gladiifolium

![](_page_20_Picture_8.jpeg)

# Sect. Episeiostenium

![](_page_21_Picture_1.jpeg)

Characterized by:

- endemic to West Indies
- typically cordate blades but without good characters

4 species recognized by Engler, currently 8 species. Confirmed by molecular studies by Carlsen.

![](_page_21_Picture_6.jpeg)

Characterized by:

- usually having ovate-cordate blades with 2 or more basal veins that reach apex
- glandular-punctate surfaces
- ovules 2 or more locular
- berries usually square when young.

Engler treated 5 species, currently there are 45 species.

# Sect. Digittinervium

![](_page_22_Picture_7.jpeg)

# Sect. Cardiolonchium

Characterized by:

- typically velvety blades which dry greenish
- often ribbed petioles
  - chromosomes 2n=32 with B chromosome From Engler's 15 species, the count is now 245, an increase of

![](_page_23_Picture_5.jpeg)

### A. angamarcanum

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)

MISSOURI BOTANICAL GARDEN

### A. queremalense

![](_page_23_Picture_11.jpeg)

# Sect. Calomystrium

globosum

A. oyulelae

A. roseonavicularum

Characterized by:

- persistent intact cataphylls
- typically terete petioles
- usually cordate blade
- frequently with short pale lineations and with dark punctations
- typically thick and glossy flowers

Engler included only **15** species; current count is **252** a 950% increase.

![](_page_24_Picture_8.jpeg)

# Section Belolonchium

Characterized by:

- typically from high elevation
- cataphylls persisting as dense fibers
- no punctations
- spathe hooding
- frequently pendent spadix

Engler treated **54** species; current count is **276**, an increase of 410%

### A. antonioanum

![](_page_25_Picture_9.jpeg)

# Sect. Semaeophyllium

Characterized by three lobed blades

Likely a polyphyletic group

19 species were treated by Engler; section was revised by Carlsen & Croat (2007) with a total of 23 species.

![](_page_26_Picture_4.jpeg)

# Sect. Dactylophyllium

Characterized by leaf blades 3 or more lobed with lobes free to the base.

Treated as sect. Schizoplacium by Engler with 11 species.

Presently there are 28 species.

![](_page_27_Picture_4.jpeg)

# Sect. Andiphyllum

![](_page_28_Picture_1.jpeg)

A. berriozabelense

Treated principally as sect. Belolonchium by Engler but now a distinct endemic section in Mexico and Guatemala. 12 species

### Characterized by:

- Mexican and Guatemalan endemic
- Usually D-shaped petioles
- Mostly ovate-cordate blades
- Epunctate
- Berries orange
- Mesocarp pasty
- Seeds large and pale

![](_page_28_Picture_12.jpeg)

### A. cerrobaulense

A. silvigaudens

# Sect. Cordato-punctatum

![](_page_29_Picture_1.jpeg)

A. longipeltatum

- Unique to Mexico & Guatemala
- Cordate blades with glandular punctations. Only a single species was recognized by Engler who placed it in sect. Belolonchium. The remainder were described later.

Currently there are only 6 species in the section.

![](_page_29_Picture_5.jpeg)

![](_page_29_Picture_6.jpeg)

![](_page_30_Figure_0.jpeg)

2. Comparative Studies of Central America vs. South

South America is 2.6 times larger than South America

![](_page_30_Figure_3.jpeg)

![](_page_30_Picture_4.jpeg)

# South America: Species of Araceae by Country

South America has 44 genera and 1433 published species

![](_page_31_Figure_2.jpeg)

# Araceae Checklist for Central America shows stark contrasts with South America

| CHECKLIST OF ARACEAE OF CENTRAL AMERICA          |           |            | Mexico | Guat. | Bel. | El Salv.Ho | Hond. | Nic. | CR    | Pan   | Middle Ar | Mexio | Guat. | Belize | El Sal. | Hond | Nic | CR  | Pan |
|--------------------------------------------------|-----------|------------|--------|-------|------|------------|-------|------|-------|-------|-----------|-------|-------|--------|---------|------|-----|-----|-----|
| ADELONEMA                                        | Species c | Var. & Ssp |        |       |      |            |       |      |       |       |           |       |       |        |         |      |     |     |     |
| A. allenii (Croat) S. Y. Wong & Croat            | 1         |            |        |       |      |            |       |      | 1     | . 1   | . 1       |       |       |        |         |      |     |     |     |
| A. hammelii (Grayum & Croat) S. Y. Wong & Croat  | 1         |            |        |       |      |            |       |      | 1     | L     | 1         |       |       |        |         |      |     | 1   |     |
| A. panamense Croat & R. Mansell                  | 1         |            |        |       |      |            |       |      |       | 1     |           |       |       |        |         |      |     |     | 1   |
| A. peltata (Masters) S.Y. Wong & Croat           | 1         |            |        |       |      |            |       |      |       | 1     |           |       |       |        |         |      |     |     |     |
| A. picturata (Linden & André) S. Y. Wong & Croat | 1         |            |        |       |      |            |       |      | 1     | . 1   | . 1       |       |       |        |         |      |     |     |     |
| X. mafaffa Schott                                | 1         |            |        |       |      |            |       |      | 1     | L     | 1         |       |       |        |         |      |     |     |     |
| X. mexicanum liebmann                            | 1         |            | 1      | 1     | . 1  | . 1        |       | 1    | 1     | . 1   | . 1       |       |       |        |         |      |     |     |     |
| X. ortizii Croat                                 | 1         |            |        |       |      |            |       |      |       | 1     | I <u></u> |       |       |        |         |      |     |     | 1   |
| X. petaquillense Croat, Delannay & Lingan        | 1         |            |        |       |      |            |       |      |       | 1     |           |       |       |        |         |      |     |     | 1   |
| X. pringlei Croat                                | 1         |            | 1      |       |      |            |       |      |       |       |           | 1     |       |        |         |      |     |     |     |
| X. robustum Schott                               | 1         |            | 1      | 1     | . 1  | 1          | 1     | 1    | 1     | L     | 1         |       |       |        |         |      |     |     |     |
| X. sagittifolium (L) Schott Introduced           | 1         |            | 1      | 1     | . 1  | . 1        | 1     | 1    | 1     | . 1   | 1         |       |       |        |         |      |     |     |     |
| X. cerrosapense Croat & O. Ortiz                 | 1         |            |        |       |      |            |       |      |       | 1     |           |       |       |        |         |      |     |     | 1   |
| X. undipes C. Koch                               | 1         |            |        |       |      |            |       |      | 1     | . 1   | 1         |       |       |        |         |      |     |     |     |
| X. violaceum Schott                              | 1         |            | 1      |       |      |            |       |      |       | 1     |           |       |       |        |         |      |     |     |     |
| X. wendlandii (Schott) Schott                    | 1         |            | 1      | 1     |      | 1          | 1     | 1    | 1     | . 1   | . 1       |       |       |        |         |      |     |     |     |
| X. yucatanense Engler                            | 1         |            | 1      |       |      |            |       |      |       |       |           | 1     |       |        |         |      |     |     |     |
| Total Xanthosoma                                 | 18        | 0          | 7      | 4     | 3    | 4          | 3     | 4    | 8     | 8 13  | 8         | 2     | 0     | (      | 0 0     | 0    | 0   | 1   | 6   |
|                                                  |           |            |        |       |      |            |       |      |       |       |           |       |       |        |         |      |     |     |     |
| ZANTEDESHIA                                      |           |            |        |       |      |            |       |      |       |       |           |       |       |        |         |      |     |     |     |
| Z. aethiopica (L.) Spreng.                       | 1         |            | 1      |       |      |            |       |      | 1     | 1 1   | . 1       |       |       |        |         |      |     |     |     |
| Total Zantedeschia                               | 1         | 0          | 1      | 0     | 0    | 0          | 0     | 0    | 1     | 1     | 1         | 0     | 0     | (      | 0 0     | 0    | 0   | 0   | 0   |
| Grand Total Species                              | 781.5     | 44.5       | 139.5  | 91    | 54   | 32         | 71    | 108  | 327.5 | 615   | 321       | 91    | 16    | 2      | 2 0     | 4    | 2   | 152 | 551 |
|                                                  |           | 826        | 18%    | 12%   | 7%   | 4%         | 9%    | 14%  | 42%   | 5 79% | 5         | 65%   | 18%   | 4%     | o%      | 6%   | 2%  | 46% | 90% |
| Total Genera                                     | 25        |            |        |       |      |            |       |      |       |       |           |       |       |        |         |      |     |     |     |

Comparison of Araceae of Central America with Araceae of Colombia

- 781 species in Central America
- 820 species in Colombia
- Panama has 0.95 % as many species as Colombia but is much larger in size.

![](_page_33_Picture_4.jpeg)

### Floristic Comparisons of Central and South America

- A complete list of aroid species exists for Central America (781 species).
- Most explored parts of Central America are reasonably well-known [Probably 10% of the flora is still not yet collected].
- Endemism and Species Diversity increases dramatically as one approaches South America.
- Panama (with 79% of all the species in Central America) has 615 species, 90% of them presently believed to be endemic.
- Colombia, 15 times larger in area and many times more diverse, has only 820 named species (Panama currently has 4/5 as many as Colombia).

![](_page_34_Figure_6.jpeg)

### Conservative extrapolation assures great increases

- Colombia alone must have between 8,000 and 12,000 undiscovered species.
- Collecting has essentially stopped or is progressing too slowly to prevent mass extinction before these species are collected, studied and described.
- Experts must be encouraged to collect for greatest efficiency.
  - Jatun Sacha Biological Station: great increases with less than 6 hours of collecting

![](_page_35_Picture_5.jpeg)

3. Lucid Technology Has Eased the Discovery of New Species

![](_page_36_Figure_1.jpeg)

- Lucid Technology developed in Australia; Lucid key developed at Kew
- Anthurium key- Authored by Anna Haigh, Laura Reynolds & Tom Croat
- The initial 600 species entered in Lucid at Kew
- Since ca. 2012 Lucid is being developed by MO
- Current number of species in Lucid Key 1575

- While Engler's 1905 Revision dealt with 454 names of Anthurium, many are now considered synonyms. Thus his total number of names was only 266 species.
- This contrasts with the present total of 1834 names present in the current Anthurium spreadsheet (unpublished), an increase in 580 % from the time of Engler. Most of the species have been described in recent years and 1688 of the total are authored by Croat (92 % of the current total).

![](_page_37_Picture_2.jpeg)

# Philodendron Lucid Key

- Philodendron key- Authored by Marcela Mora, Tom Croat, Simon Mayo, Anna Haigh
- The initial 400 species entered in Lucid at Kew
- Since ca. 2012 Lucid is being developed by MO
- Current number of species in Lucid Key 621
- Growth potential, percentage-wise is much greater for Philodendron than for Anthurium

# Determination Tool and added Asset to Luid

- Archive with both photographs of dried and live plants
- Descriptions (detailed with different versions)

![](_page_39_Picture_3.jpeg)

# Other Developments Which Have Led to Species Discovery

- Access to Loans from Colombia and Ecuador
- OPUS trip to Herbaria with Neotropical Collections;
- South America 25 Herbaria visited
  - 8,000 images of undeterminable specimens
    - Specimen data is being entered into Tropicos
    - Images are being labeled and added to Tropicos
  - OPUS trip to 13 European Herbaria
    - 1000 images+, many of types
  - OPUS trip to 16 Central American Herbaria
    - 1000 images taken.

![](_page_40_Picture_11.jpeg)

# **Conclusions and Predictions**

 Since this provides evidence that there are many new species it is critical that more field studies must be undertaken. Current regulations that inhibit or prevent collecting must be re-evaluated. Experts in specific areas should be **encouraged** to spend more time in the field and more time training younger **botanists**, especially those in Latin America. Failure to take action will certainly result in extinction of species before they are ever known to science.

![](_page_41_Picture_2.jpeg)

# Conclusiones y predicciones

• Dado que esto proporciona evidencia de que hay muchas especies nuevas, es fundamental que se realicen más estudios de campo. Las regulaciones actuales que inhiben o impiden la recolección deben ser reevaluadas. Se debe alentar a los expertos en áreas específicas a pasar más tiempo en el campo y más tiempo capacitando a botánicos más jóvenes, especialmente a los de América Latina. Si no se toman medidas, la extinción de las especies se producirá antes de que la ciencia las conozca.

![](_page_42_Picture_2.jpeg)